Skip to main content

Advertisement

Log in

Facies architecture and spatio-temporal depositional variability in the Pliocene Sandhan fluvial system, Kutch Basin, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

The glaciation-induced base-level fall and basin physiography straightforward controls fluvial style in any coastal setting. An alternate climatic influence including warm and cold (glacial) conditions may result in marine onlap with interception by unconformity formation and fluvial incursion in a coastal stratigraphic record. Unconformably overlying the marine sediments, the fluvial sandstone in the upper part of Pliocene Sandhan Formation is studied herein for documentation of architectural element and variability in the fluvial sedimentation motif, if any, in space-time framework. The identified architectural elements include channel (CH), gravel bar and bedforms (GB), sandy bedforms (SB), downstream accretion (DA), sediment gravity flow (SG), compound bar (CB) overbank fines (OF) and paleosol (P). From dominance of coarse-grained, granular pebbly sandstone with SB, GB, SG and DA elements, and incidence of 6–12 m thick fining-upward cycles, it is inferred that the Sandhan fluvial system was of Donjek-type braided in character. Only at the Nagmati River section in the south-east, a change in fluvial character is recorded as Platte-type. A role of basin physiography involving median-high across the depositional profile is identified from (i) decrease in thickness of fluvial deposit from north-west to south-southeast, and (ii) reduction in topographic-gradient in the south-southeast. Considering the Pliocene time frame, the fluvial incursion onto the marine system within Sandhan depositional history is identified as a result of base-level fall under influence of global glaciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Adams M M and Bhattacharya J P 2005 No change in fluvial style across a sequence boundary, Cretaceous Blackhawk and Castlegate formations of central Utah, USA; J. Sedim. Res. 75 1038–1051.

    Article  Google Scholar 

  • Allen J R L 1974 Studies in fluviatile sedimentation: Implications of pedogenic carbonate units, lower old red sandstone, Anglo-Welsh outcrop; Geol. J. 9 181–208.

    Article  Google Scholar 

  • Allen J R L 1983 Studies in fluviatile sedimentation: Bars, bar-complexes and sandstone sheets (low-sinuosity braided streams) in the brownstones (L. Devonian), Welsh Borders; Sedim. Geol. 33 237–293.

    Article  Google Scholar 

  • Ashley G M 1990 Classification of large-scale subaqueous bedforms: A new look at an old problem; J. Sedim. Petrol. 60 160–172.

    Article  Google Scholar 

  • Bajpai S, Thewissen J G M, Kapur V V, Tiwari B N and Sahni A 2006 Eocene and oligocene sirenians (Mammalia) from Kachchh, India; J. Vert. Paleont. 26(2) 400–410.

    Article  Google Scholar 

  • Banerjee S, Chattoraj S L, Saraswati P K, Dasgupta S, Sarkar U and Bumby A 2012a The origin and maturation of lagoonal glauconites: A case study from the Oligocene Maniyara Fort formation, western Kutch, India; Geol. J. 47 357–371.

    Article  Google Scholar 

  • Banerjee S, Chattoraj S L, Saraswati P K, Dasgupta S and Sarkar U 2012b Substrate control on formation and maturation of glauconites in the Middle Eocene Harudi Formation, western Kutch, India; Mar. Pet. Geol. 30 144–160.

    Article  Google Scholar 

  • Banerjee S, Khanolkar S and Saraswati P K 2018 Facies and depositional settings of the middle Eocene-Oligocene carbonates in Kutch; Geodinamica Acta 30(1) 119–136.

    Article  Google Scholar 

  • Biswas S K 1965 A new classification of the tertiary rocks of Kutch, Western India; Quat. J. Geol. Mineral. Metallur. Soc. India Bull. 35 1–6.

    Google Scholar 

  • Biswas S K 1971 Note on the geology of Kutch; Quat. J. Geol. Mineral. Metallur. Soc. India 43(4) 223–235.

    Google Scholar 

  • Biswas S K 1973 Time stratigraphic classification of the tertiary rocks of Kutch—A revision and amendments; Quat. J. Geol. Mineral. Metallur. Soc. India 44(3) 29–37.

    Google Scholar 

  • Biswas S K 1982 Rift basins in western margin of India and their hydrocarbon prospects with special reference to Kutch basin; AAPG Bull. 66(10) 1497–1513.

    Google Scholar 

  • Biswas S K 1987 Regional tectonic framework, structure and evolution of the western marginal basins of India; Tectonophys. 135(4) 307–327.

    Article  Google Scholar 

  • Biswas S K 1992 Tertiary stratigraphy of Kutch; J. Palaeontol. Soc. India 37 1–29.

    Google Scholar 

  • Biswas S K and Deshpande S V 1970 Geological and tectonic maps of Kutch; Bull. Oil Nat. Gas Comm. 7(2) 115–116.

    Google Scholar 

  • Biswas S K and Khatri K N 2002 A Geological study of earthquakes in Kutch, Gujarat, India; J. Geol. Soc. India 60 131–142.

    Google Scholar 

  • Blodgett R H and Stanley K O 1980 Stratification, bedforms and discharge relations of the platte river system, Nebraska; J. Sedim. Petrol. 50 139–148.

    Google Scholar 

  • Blum M D and Tornqvist T E 2000 Fluvial response to climate and sea level change: A review and look forward; Sedimentology 47(1) 2–48.

    Article  Google Scholar 

  • Bose P K, Sarkar S, Mukhopadhyay S, Saha B and Eriksson P 2008 Precambrian basin-margin fan deposits: Mesoproterozoic Bagalkot Group, India; Precamb. Res. 162(1–2) 264–283.

    Google Scholar 

  • Bridge J S 2006 Fluvial facies models: Recent developments; In: Facies models revisited (eds) Posamentier, Henry W and Walker R G, SEPM (Soc. Sedim. Geol.) Spec. Publ. 84 85–170.

  • Bristow C S and Best J L 1993 Braided rivers: Perspectives and problems; Geol. Soc. London, Spec. Publ. 75(1) 1–11.

    Article  Google Scholar 

  • Burkham D E 1972 Channel changes of the Gila river in Safford Valley, Arizona, US; Geol. Surv. 24 655.

    Google Scholar 

  • Cant D J and Walker R G 1978 Fluvial processes and facies sequences in the sandy braided south saskatchewan river, Canada; Sedimentology 25 625–648.

    Article  Google Scholar 

  • Castradori D, Rio D, Hilgen F J and Lourens L J 1998 The Global standard stratotype-section and point (GSSP) of the piacenzian stage (Middle Pliocene); Episodes 21 88–93.

    Article  Google Scholar 

  • Catuneanu O 2006 Principles of sequence stratigraphy; 1st edn, Elsevier, Oxford, 374p.

    Google Scholar 

  • Catuneanu O and Dave A 2017 Cenozoic sequence stratigraphy of the Kachchh Basin, India; Mar. Pet. Geol. 86 1106–1132.

    Article  Google Scholar 

  • Chattoraj S L, Banerjee S, Saraswati P K and Bansal U 2016 Origin, depositional setting and stratigraphic implications of palaeogene glauconite of Kutch; Geol. Soc. India, Spec. Publ. 6 75–88.

    Google Scholar 

  • Church M and Rood K 1983 Catalogue of alluvial river channel regime data; University of British Columbia, Department of Geography Vancouver, BC, 99p.

    Google Scholar 

  • Collinson J D 1970 Bedforms of the Tana river, Norway; Geogr. Ann. 52A 31–55.

    Article  Google Scholar 

  • Crowley R D 1983 Large scale bed configurations (Macroform), Platt river basin Colorado and Nebraska–Primary structure and formative processes; Geol. Soc. Am. Bull. 94 117–133.

    Article  Google Scholar 

  • Dekens P S, Ravelo A C, McCarthy M D and Edwards C A 2008 A 5 million year comparison of Mg/Ca and alkenone paleothermometers; Geochem. Geophys. Geosyst. 9(10).

  • Finzel E S and McCarthy P J 2005 Architectural analysis of fluvial conglomerate in the Nanushuk Formation, Brooks Range foothills, Alaska; Alaska Division of Geological and Geophysical Surveys Preliminary Investigative Report (2) 19.

  • Fluger P and Seilacher A 1991 Flash flood conglomerates; In: Cycles and events in stratigraphy (eds) Einsele G, Ricken W and Seilacher A, Springer-Verlag, Berlin, New York, pp. 383–391.

    Google Scholar 

  • Friend P F 1983 Towards the field classification of alluvial architecture or sequence; In: Modern and ancient fluvial systems (eds) Collinson J D and Lewin J, Int. Assoc. Sedimentol., Spec. Publ. 6 345–354.

  • Gustavson T C 1978 Bedforms and stratification types of modern gravel meander lobes, Nueces river, Texas; Sedimentology 25 401–426.

    Article  Google Scholar 

  • Haszeldine R S 1983 Fluvial bars reconstructed from a deep, straight channel, Upper carboniferous coalfield of northeast England; J. Sedim. Petrol. 53 1233–1248.

    Google Scholar 

  • Hein F J and Walker R G 1977 Bar evolution and development of stratification in the gravelly, braided Kicking Horse River, British Columbia; Can. J. Earth Sci. 14 562–570.

    Article  Google Scholar 

  • Hjellbakk A 1997 Facies and fluvial architecture of a high-energy braided river: The upper proterozoic seglodden member, Varanger Peninsula, northern Norway; Sedim. Geol. 114 131–161.

    Article  Google Scholar 

  • Hoey T 1992 Temporal variations in bedload transport rates and sediment storage in gravel-bed Rivers; Progr. Phys. Geogr. 16 319–338.

    Article  Google Scholar 

  • Holbrook J, Scott R W and Oboh-Ikuenobe F E 2006 Base-level buffers and buttresses: A model for upstream versus downstream control on fluvial geometry and architecture within sequences; J. Sedim. Res. 76(1) 162–174.

    Article  Google Scholar 

  • Hornung J and Aigner T 1999 Reservoir and aquifer characterization of fluvial architectural elements: Stubensandstein, upper Triassic, southwest Germany; Sedim. Geol. 129 215–280.

    Article  Google Scholar 

  • Jackson R G 1976 Depositional model of point bars in the lower Wabash River; J. Sedim. Petrol. 46 579–594.

    Google Scholar 

  • Janssens M M, Kasse C, Bohncke S J P, Greaves H, Cohen K M, Wallinga J and Hoek W Z 2012 Climate-driven fluvial development and valley abandonment at the last glacial–interglacial transition (Oude IJssel–Rhine, Germany); Netherlands J. Geosci./Geol. Mijnbouw 91 37–62.

    Article  Google Scholar 

  • Jo H R and Chough S K 2001 Architectural analysis of fluvial sequences in the northwestern part of Kyongsang Basin (Early Cretaceous), SE Korea; Sedim. Geol. 144 307–334.

    Article  Google Scholar 

  • Jones C M and McCabe P J 1980 Erosion surfaces within giant fluvial cross-beds of the Carboniferous in northern England; J. Sedim. Petrol. 50 613–620.

    Google Scholar 

  • Kasse C, Van Balen R T, Bohncke S J P and Wallinga Vreugdenhil J M 2016 Climate and base-level controlled fluvial system change and incision during the last glacial–interglacial transition, Roer river, the Netherlands – western Germany; Netherlands J. Geosci./Geol. Mijnbouw, https://doi.org/10.1017/njg.2016.50.

  • Khanolkar S, Saraswati P and Rogers K 2017 Ecology of foraminifera during the middle Eocene climatic optimum in Kutch, India; Geodinamica Acta 29(2) 181–193.

    Article  Google Scholar 

  • Kirk M 1983 Bar developments in a fluvial sandstone (Westphalian “A”), Scotland; Sedimentology 30 727–742.

    Article  Google Scholar 

  • Kraus M J 1999 Paleosols in clastic sedimentary rocks: Their geological applications; Earth-Sci. Rev. 47 41–70.

    Article  Google Scholar 

  • Kumar P, Saraswati P K and Banerjee S 2009 Early miocene shell concentration in the mixed carbonate–siliciclastic system of Kutch and their distribution in sequence stratigraphic framework; J. Geol. Soc. India 74 432–444.

    Article  Google Scholar 

  • Lander R H, Bloch S, Mehta S and Atkinson C D 1991 Burial diagenesis of paleosols in the giant Yacheng gas field, People’s Republic of China: Bearing on illite reactivation pathways; J. Sedim. Petrol. 61 256–268.

    Google Scholar 

  • Lawrence K T, Liu Z and Herbert T D 2006 Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation; Science 312(5770) 79–83.

    Article  Google Scholar 

  • Less G, Frijia G, Özcan E, Saraswati P K, Parente M and Kumar P 2018 Nummulitids, lepidocyclinids and Sr-isotope data from the Oligocene of Kutch (western India) with chronostratigraphic and paleobiogeographic evaluations; Geodinamica Acta 30(1) 183–211.

    Article  Google Scholar 

  • Levey R A 1978 Bedform distribution and internal stratification of coarse-grained point bars, upper Congaree river, South Carolina; In: Fluvial sedimentology (ed.) Miall A D, Canadian Soc. Petrol. Geol. Memoir, pp. 105–127.

  • Lisiecki L E and Raymo M E 2005 A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records; Paleoceanography 20 PA1003.

  • Long D G F 2011 Architecture and depositional style of fluvial systems before land plants: A comparison of Precambrian, early Paleozoic and modern river deposits from river to rock record: The preservation of fluvial sediments and their subsequent interpretation; SEPM (Soc. Sedim. Geol.) 97 37–61.

    Google Scholar 

  • Lunt D, Foster G, Haywood A and Stone E 2008 Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels; Nature 454(7208) 1102–1105.

    Article  Google Scholar 

  • Martinez-Garcia A, Rosell-Mele A, McClymont E L, Gersonde R and Haug G H 2010 Subpolar link to the emergence of the modern equatorial Pacific cold tongue; Science 328(5985) 1550–1553.

    Article  Google Scholar 

  • McKay R, Naish T, Carter L, Riesselman C, Dunbar R, Sjunneskog C, Winter D, Sangiorgi F, Warren C, Pagani M, Schouten S, Willmott V, Levy R, DeConto R and Powell R D 2012 Antarctic and Southern Ocean influences on late Pliocene global cooling; Proc. Nat. Acad. Sci. 109(17) 6423–6428.

    Article  Google Scholar 

  • McKee E and Weir G W 1953 Terminology for stratification and cross-stratification in sedimentary rocks; Geol. Soc. Am. Bull. 64 381–390.

    Article  Google Scholar 

  • Miall A D 1977 A review of the braided river depositional environment; Earth-Sci. Rev. 13 1–62.

    Article  Google Scholar 

  • Miall A D 1985 Architectural-element analysis: A new method of facies analysis applied to fluvial deposits; Earth-Sci. Rev. 22 261–308.

    Article  Google Scholar 

  • Miall A D 1986 Eustatic sea level changes interpreted from seismic stratigraphy: A critique of methodology with particular references to the North Sea Jurassic record; AAPG Bull. 70(2) 131–137.

    Google Scholar 

  • Miall A D 1988 Architectural elements and bounding surfaces in fluvial deposits: Anatomy of the Kayenta Formation (Lower Jurassic), southwest Colorado; Sedim. Geol. 55(3–4) 233–262.

    Article  Google Scholar 

  • Miall A D 1992 Alluvial deposits; In: Facies Models – Response to Sea Level Change (eds) Walker R G and James N P, Geological Association of Canada, pp. 119–142.

  • Miall A D 1996 The geology of fluvial deposits-sedimentary facies, basin analysis, and petroleum geology; 1st edn, Springer-Verlag, Berlin, 582p.

    Google Scholar 

  • Miall A D 2006 Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservoir development: A reality check; Am. Assoc. Pet. Geol. Bull. 90 989–1002.

    Google Scholar 

  • Miall A D 2013 The geology of fluvial deposits: Sedimentary facies, basin analysis, and petroleum geology; 4th edn, Springer-Verlag, Berlin, 582p.

    Google Scholar 

  • Miall A D and Jones B G 2003 Fluvial architecture of the Hawkesbury Sandstone (Triassic), near Sydney, Australia; J. Sedim. Res. 73 531–545.

    Article  Google Scholar 

  • Miller G, Kominz M A, Browning J V, Wright J D, Mountain G S, Katz M E, Sugarman P J, Cramer B S, Christie-Blick N and Pekar S F 2005 The Phanerozoic record of global sea-level change; Science 310 1293–1298.

    Article  Google Scholar 

  • Miller K G, Wright J D, Browning J V, Kulpecz A, Kominz M, Naish T R, Cramer B S, Rosenthal Y, Peltier W R and Sosdian S 2012 High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation; Geology 40 407–410.

    Article  Google Scholar 

  • Naafs B D A, Stein R, Hefter J, Khélifi N, De Schepper S and Haug G H 2010 Late Pliocene changes in the North Atlantic Current; Earth Planet. Sci. Lett. 298 434–442.

    Article  Google Scholar 

  • Nanson G C 1986 Episodes of vertical accretion and catastrophic stripping: A mode of disequilibrium floodplain development; Bull. Geol. Soc. Am. 97 1467–1475.

    Article  Google Scholar 

  • Pandey J 1982 Chronostratigraphic correlation of the Neogene sedimentaries of western Indian shelf, Himalaya and Upper Assam; Plaeontol. Soc. India, Spec. Publ. 1 95–129.

    Google Scholar 

  • Plint A G and Nummedal D 2000 The falling stage systems tract: Recognition and importance in sequence stratigraphic analysis; In: Sedimentary responses to forced regression (eds) Hunt D and Gawthorpe R L; Geol. Soc. London, Spec. Publ. 172 1–18.

  • Posamentier H W and Allen G P 1993 Variability of the sequence stratigraphic model: Effects of local basin factors; Sedim. Geol. 86 91–109.

    Article  Google Scholar 

  • Raju D S N 1974 Study of Indian Miogypsinoidae, Kutch; In: Utrecht micropaleontological Bulletins (eds) Drooger C W and Krips Repro Meppel, Netherlands 9 13–53.

  • Raju D S N 1991 Miogypsina scale and Indian chronostratigraphy; Geosci. J. 12 53–65.

    Google Scholar 

  • Raju D S N 2011 Oligo-Miocene larger foraminiferal zones of India and their importance in classification and correlation; ONGC Bull. 46 40–62.

    Google Scholar 

  • Ramos A and Sopena A 1983 Gravel bars in low sinuosity streams (Permian and Triassic, Central Spain); In: Modern and Ancient Fluvial Systems (eds) Collinson J D and Lewis J, Int. Assoc. Sedimentol., Spec. Publ. 6 301–312.

  • Ravelo A C, Andreasen D H, Lyle M, Olivarez Lyle A and Wara M W 2004 Regional climate shifts caused by gradual global cooling in the Pliocene Epoch; Nature 429 263–267.

    Article  Google Scholar 

  • Retallack R J 1988 Field recognition of paleosols; In: Paleosols and Weathering through Geologic Time: Principles and Applications (eds) Reinhardt J and Sigleo W R, Geol. Soc. Am. Spec. Paper 216 1–21.

  • Reuter M, Piller W E, Harzhauser M and Kroh A 2013 Cyclone trends constrain monsoon variability during late Oligocene Sea level highstands (Kachchh Basin, NW India); Clim. Past 9 2101–2115.

    Article  Google Scholar 

  • Rust B R 1972 Structure and process in braided river; Sedimentology 18 221–245.

    Article  Google Scholar 

  • Samanta B K and Lahiri A 1985 The occurrence of Discocyclina Gümbel in the middle Eocene Fulra limestone of Cutch, Gujarat, Western India, with notes on species reported from the Indian region; Bull. Geol. Min. Metallur. Soc. India 52 211–295.

    Google Scholar 

  • Saraswati P K 1994 Biometric study of Lepidocyclina (Nephrolepidina) from Kutch, Saurashtra, and Quilon (India); J. Geol. Soc. India 44 79–90.

    Google Scholar 

  • Saraswati P K 1995 Biometry of early Oligocene Lepidocyclina from Kutch, India; Mar. Micropaleontol. 26 303–311.

    Article  Google Scholar 

  • Saraswati P K, Sarkar U and Banerjee S 2012 Nummulites solitaries – Nummulites burdigalensis lineage in Kutch with remarks on the age of Naredi formation; J. Geol. Soc. India 79 476–482.

    Article  Google Scholar 

  • Saraswati P K, Khanolkar S, Raju D S N, Dutta S and Banerjee S 2014 Foraminiferal biostratigraphy of lignite mines of Kutch, India: Age of lignite and fossil vertebrates; J. Palaeogeogr. 3(1) 90–98.

    Google Scholar 

  • Saraswati P K, Banerjee S, Sarkar U, Chakraborty S and Khanolkar S 2016 Eocene depositional sequence and cycles in Kutch; Geol. Soc. India Spec. Publ. 6 46–56.

    Google Scholar 

  • Saraswati P K, Khanolkar S and Banerjee S 2018 Paleogene stratigraphy of Kutch, India: An update about progress in foraminiferal biostratigraphy; Geodinamica Acta 30 100–118.

    Article  Google Scholar 

  • Sarkar S, Samanta P, Mukhopadhyay S and Bose P K 2012a Stratigraphic architecture of the Sonia Fluvial interval, India in its Precambrian context; Precamb. Res. 2012 210–226.

    Article  Google Scholar 

  • Sarkar U, Banerjee S and Saraswati P K 2012b Integrated borehole and outcrop study for documentation of sea level cycles within the Early Eocene Naredi Formation, western Kutch, India; J. Palaeogeogr. 1 126–137.

    Google Scholar 

  • Schumm S A 1993 River response to base level change: Implications for sequence stratigraphy; J. Geol. 101 279–294.

    Article  Google Scholar 

  • Schumm S A and Lichty R W 1963 Channel widening and floodplain construction along Cimarron River, southwestern Kansas: U.S.; Geol. Surv. Prof. Paper 352-E.

  • Schwertmann U 1993 Relations between iron oxides, soil color, and soil formation; Soil Color (soilcolor) 31 51–69.

    Google Scholar 

  • Sengupta S, Syed R and Sarkar S 2015 Preliminary report on the wall overgrowth in some lower Oligocene reticulate Nummulites (Foraminiferida), SW Kutch, India; J. Palaeontol. Soc. India 60 85–87.

    Google Scholar 

  • Shanley K W and McCabe P J 1993 Alluvial stratigraphy in a sequence stratigraphic framework: A case history from the Upper Cretaceous of Southern Utah, USA; In: The Geological Modelling of Hydrocarbon Reservoirs and Outcrop Analogues (eds) Flint S S and Bryant I D; Int. Assoc. Sedimentol., Spec. Publ. 15 21–56.

  • Shekhar S, Shukla A and Kumar P 2018 Sedimentary record of forced regression along the margin of Kutch basin: Terminal Cenozoic succession (Sandhan Formation), western India; J. Indian Assoc. Sedimentol. 35(1) 23–35.

    Google Scholar 

  • Smith N D 1970 The braided stream depositional environment: Comparison of the Platte River with some Silurian clastic rocks, North-Central Appalachians; Geol. Soc. Am. Bull. 81 2993–3014.

    Article  Google Scholar 

  • Smith N D 1971 Transverse bars and braiding in the lower Platte River, Nebraska; Geol. Soc. Am. Bull. 82(12) 3407–3420.

    Article  Google Scholar 

  • Smith N D 1972 Some sedimentological aspects of planar cross-stratification in a sandy braided river; J. Sedim. Petrol. 42 624–634.

    Google Scholar 

  • Smith D G 1983 Anastomosed fluvial deposits: Modern examples from western Canada; In: Modern and ancient fluvial systems (eds) Collinson J D and Lewin J; Int. Assoc. Sedimentol., Spec. Publ. 6 155–168.

  • Smith S A 1990 The sedimentology and accretionary styles of an ancient gravel-bed stream: The Budleigh Salterton Pebble Beds (Lower Triassic), southwest England; Sedim. Geol. 67 199–219.

    Article  Google Scholar 

  • Tandon S K and Gibling M R 1997 Calcretes at sequence boundaries in upper Carboniferous cyclothems of the Sydney Basin, Atlantic Canada; Sedim. Geol. 112 43–67.

    Article  Google Scholar 

  • Tebbens L A, Veldkamp A, Westerhoff W and Kroonenberg S B 1999 Fluvial incision and channel downcutting as a response to Late glacial and Early Holocene climate change: The lower reach of the River Meuse, The Netherlands; Quat. J. Sci. 14 59–75.

    Article  Google Scholar 

  • Van Wagoner J C 1995 Overview of sequence stratigraphy of foreland basin deposits: Terminology, summary of papers, and glossary of sequence stratigraphy; In: Sequence Stratigraphy of Foreland Basin Deposits (eds) Van Wagoner J C and Bertram G T, Am. Assoc. Petrol. Geol. Memoir 64.

  • Van Couvering J, Castradori D, Cita M B, Hilgen F J and Rio D 2004 The base of the Zanclean stage and of the Pliocene Series; Episodes 23 179–187.

    Article  Google Scholar 

  • Vandenberghe J 1993 Changing fluvial processes under changing periglacial conditions; Zeitschrift Fur Geomorphologie Supplement Band 88 17–28.

    Google Scholar 

  • Vandenberghe J, Kasse C, Bohncke S and Kozarski S 1994 Climate-related river activity at the Weichselian-Holocene transition: A comparative study of the Warta and Maas Rivers; Terra Nova 6(5) 476–485.

    Article  Google Scholar 

  • Webb G E 1994 Paleokarst, paleosol, and rocky-shore deposits at the Mississippian–Pennsylvanian unconformity, northwestern Arkansas; Geol. Soc. Am. Bull. 106 634–648.

    Article  Google Scholar 

  • Wright V P 1994 Paleosols in shallow marine carbonate sequences; Earth-Sci. Rev. 35 367–395.

    Article  Google Scholar 

  • Wright V P and Marriott S B 1993 The sequence stratigraphy of fluvial depositional systems: The role of floodplain sediment storage; Sedim. Geol. 86 203–210.

    Article  Google Scholar 

  • Wynne A B 1872 Memoir on the geology of Kutch, to accompany the map compiled by Wynne A B and Fedden F during the session 1867–68, 1868–69; Geol. Surv. India Memoirs 19(2) 269.

    Google Scholar 

Download references

Acknowledgements

PK acknowledges the scientific project and financial support from the Department of Science and Technology (DST), Grant letter DST No: SR/FTP/ES-102/2014 to carry out this research work. The infrastructure facility extended by the Department of Geology, University of Delhi, is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

PK: Problem visualization, field work, data acquisition and manuscript writing. SS and AS: Data acquisition, field work, map and figure construction. PPC: Scientific input and manuscript writing.

Corresponding author

Correspondence to Pramod Kumar.

Additional information

Communicated by Santanu Banerjee

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Shekhar, S., Shukla, A. et al. Facies architecture and spatio-temporal depositional variability in the Pliocene Sandhan fluvial system, Kutch Basin, India. J Earth Syst Sci 130, 237 (2021). https://doi.org/10.1007/s12040-021-01730-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01730-y

Keywords

Navigation